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Modeling the intermittent behavior of turbulent energy dissipation processes in both space and time is
often a relevant problem when dealing with phenomena occurring in high-Reynolds-number flows, especially
in astrophysical and space fluids. In this paper, a dynamical model is proposed to describe the intermittency
of the energy dissipation rate in a turbulent system. This is done by using a shell model to simulate the
time evolution of the turbulent cascade and introducing some heuristic rules, partly inspired by the well-known
p model, to construct a spatial structure of the energy dissipation rate. In order to validate the model
and to study its spatial intermittency properties, a series of numerical simulations have been performed. These
show that the level of spatial intermittency of the system can be simply tuned by varying a single parameter
of the model and that scaling laws in agreement with those obtained from experiments on fully turbulent
hydrodynamic flows can be recovered. It is finally suggested that the model could represent a useful tool
to simulate the intermittent structure of turbulent energy dissipation in those high-Reynolds-number astrophysi-
cal fluids where impulsive energy release processes can be associated with the dynamics of the turbulent
cascade.
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I. INTRODUCTION

The dynamics of fluids and plasmas, in both laboratory
experiments and astrophysical or geophysical systems, is
very often characterized by the presence of turbulent motions
�1,2�. In several contexts of astrophysics and space physics,
it is extremely important to model some of the effects related
to the turbulent dynamics. In particular, describing in a
proper way the intermittency of the turbulent energy dissipa-
tion process, in both space and time, is one of the basic
ingredients for the study of several astrophysical systems. As
relevant examples, we can consider the active regions of the
solar corona �3,4�, the interstellar medium �5�, and accretion
disks �6�.

Intermittency is one of the most investigated problems in
the field of fully developed turbulence �see �1� and refer-
ences therein�. Among the many approaches used for the
study of intermittency in turbulence, here we want to briefly
recall only some of them, which are related to the work
presented in this paper. A number of random cascade models
�see, e.g., �7–10�� were initially proposed to reproduce the
observed intermittency corrections �see, e.g., �11�� to the
scaling laws of the classical Kolmogorov theory of turbu-
lence �12�. Another interesting approach to the modeling of
intermittency of the turbulent energy cascade is based on the
use of dynamical deterministic models known as shell mod-
els �see the reviews by Bohr et al. �13�, Giuliani �14�, and
Biferale �15��. More recently, several relevant developments
have led to the beginning of a deeper understanding of the
intermittency phenomenon. To mention but a few: the role of
Lagrangian conservation laws �16� and nonlocal interactions

�17� on intermittency and the introduction of new multifrac-
tal approaches for the description of velocity increments
statistics �18�.

Besides these important theoretical advances, there are
several more specific situations where a simple dynamical
system modeling of intermittency in the turbulent cascade
can be extremely helpful. This can be the case of astrophysi-
cal and space fluids, where, due to the extremely large
Reynolds numbers, dynamical models which are able to
simulate the turbulent cascade and the related energy
dissipation processes in Reynolds number regimes which are
not far from the real ones �at least with respect to direct
numerical simulations� can represent an essential ingredient
for the modeling of such physical systems. An example
is given by the recent applications of shell models to
the description of the statistical properties of solar flares
�19,20� and to the nanoflares occurring in solar coronal
loops �21�. In this framework, it is worth pointing out
that shell models provide only a temporal description
of the intermittency properties since they lack any
spatial information. The possibility to have a dynamical
“shell-like” model capable of reproducing some intermit-
tency properties in both space and time would thus be
attractive.

For the reasons explained above, in this work we
propose a simple method to model the intermittent character
of energy dissipation in a turbulent system in both space
and time, by using a shell model together with some
rules inspired to some extent by the well-known turbulence
p model �10�. The paper is organized as follows. In Sec. II
we recall the main ideas concerning shell models and the p
model, in Sec. III we give a description of the proposed
method, in Sec. IV we provide some details about the
numerical procedure, and in Sec. V we show the results*Corresponding author. Email address: lepreti@fis.unical.it
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of the spatial intermittency analysis performed in order to
validate the proposed model, while the conclusions are
drawn in Sec. VI.

II. BACKGROUND

A. Shell model

Shell models were introduced in the 1970s by Obukhov
�22�, Gledzer �23�, and Desnyansky and Novikov �24� in the
context of hydrodynamic turbulence and, since then, used
extensively both in hydrodynamics �see, e.g., �25,26�� and
magnetohydrodynamics �MHD� �see, e.g., �27–30��. They
are based on a set of coupled nonlinear ordinary differential
equations which describe the dynamics of the turbulent
energy cascade in the wave-vector space. The dynamical
and statistical behaviors of shell models have been investi-
gated in detail in many works �see �13–15� and references
therein�, and it has been shown that they are able to describe
several properties of the turbulent energy cascade process.
The main advantage of shell models is that they can
be investigated through numerical simulations at high
Reynolds numbers much more easily than Navier-Stokes
�NS� or MHD equations, due to the reduced number of de-
grees of freedom. On the other hand, an obvious minus of
these models is the absence of any information about spatial
structures.

Shell models are built up by dividing the wave-vector
space in a discrete number of shells of radius kn=k0�n, with
��1 fixing the shell logarithmic spacing �usually �=2� and
n=1,2 , . . . ,N. Each shell is associated with a dynamical
complex variable un�t� which represents the time evolution
of velocity fluctuations at scale �n�kn

−1. The evolution equa-
tions for the variables un�t� are written by introducing non-
linear terms in the form of quadratic couplings between
neighboring shells. The coupling coefficients are chosen to
satisfy scale invariance and the conservation of the ideal in-
variants, such as, for example, the total energy and the
kinetic helicity for NS equations.

For this work we use the hydrodynamic shell model pro-
posed by L’vov et al. �31�, also known as the Sabra model.
The evolution equations of the shell variables are

dun

dt
= ikn�un+2un+1

* −
1

4
un+1un−1

* +
1

8
un−1un−2� − �kn

2un + fn,

�1�

where � represents the kinematic viscosity and fn is a forcing
term usually acting on some low-wavenumber-shells. From

Eq. �1�, we can derive the evolution equation for the nth shell
kinetic energy En= �unun

*� /2:

dEn

dt
= − �n − 2�kn

2En + Re�un
*fn� , �2�

where

�n = kn Im�un
*un+2un+1

* +
1

4
unun+1

* un−1 +
1

8
un

*un−1un−2�
�3�

gives the kinetic energy flux through the nth shell �the
symbols Re and Im denote the real and imaginary parts re-
spectively of a complex number�.

The total energy dissipation rate ��t� can be defined
as

��t� = ��
n=1

N

kn
2	un	2. �4�

B. The p model

The p model has been designed to describe the observed
multifractal behavior of the energy dissipation rate in fully
turbulent flows �10�. Without loss of generality, in this paper
we consider, for simplicity, a one-dimensional �1D� spatial
domain. In this case, the total dissipation rate �r�x� in the
segment �x ,x+r� is equal to �r�x�=
x

x+r��x�dx, ��x� being the
energy dissipation rate in the x position. In the p model, an
interval of size r breaks down into two subintervals of size
r /2 and the energy flux to these smaller eddies proceeds
unequally. A fraction p �with 0.5� p�1� of the dissipation
contained in the parent interval is distributed equally on one
of the two subintervals �left or right with equal probability�
and the remaining �1− p� fraction on the other subinterval.
This process starts from the integral scale L �where we have
only one interval� and is repeted until segments of size 	
�corresponding to the dissipative scale� are created. It has
been shown in Ref. �10� that using p=0.7 the multifractal
spectrum of the synthetic dissipation signal obtained through
the p model reproduces extremely well the results of
experiments.

III. THE MODEL

In a few words, the basic idea of the method proposed
here consists in using a shell model to describe the dynamics

FIG. 1. A sample of the total energy dissipa-
tion rate as a function of time �both quantities in
arbitrary units� given by the shell model.
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of the turbulent cascade process and in providing a spatial
structure to the energy dissipation using some rules, which
partly recall the p model, to distribute in space the energy
fluxes given by the shell model.

We consider a one-dimensional spatial domain whose size
is denoted by L. As a base for the construction of the spatial
energy structure we use a hierarchy of N scales �n=21−nL
�n=1,2 , . . . ,N�. For each scale n we can define a set of 2n−1

disjoint segments of size �n which cover the spatial domain.
Let us note that this is the same hierarchical structure as in
the p model; that is, each segment at the scale n can be
considered as parent of two corresponding segments at the
scale n+1 which have half the size and cover the same sub-
interval as the parent.

Let us now suppose that the N scales of this hierarchy are
associated with the N shells of the shell model and that
�n=1/kn. At each time step ti �i=1,2 , . . . � of the numerical
solution of the shell model equations, we can calculate the
energy increment 
En�ti� of the nth shell as


En�ti� = En�ti� − En�ti−1� . �5�

These increments are used to construct a spatial energy struc-
ture which evolves in time parallely to the shell model as
explained below.

The increments 
En�ti� are distributed over the spatial
grid of the corresponding scale using the following criteria.

�i� If 
En�ti��0, we first divide the energy 
En�ti� among
the segments at the scale n−1 �which thus play the role of
parent segments� proportionally to the energy contained in
them at the scale n−1. The energy increment thus obtained
for each parent segment is then transferred to the correspond-
ing two daughter segments in the same way as in the p
model—that is, adding a fraction p of the increment
�0.5� p�1� to one of the daughters �left or right with equal
probability� and the remaining �1− p� fraction to the other
daughter.

�ii� If 
En�ti��0, the increment is subtracted from the
energy at the scale n in such a way that each segment is
depleted by a fraction of 
En�ti� proportional to the energy
content of the segment itself at the same scale.

As a result of the procedure described above, to each one
of the 2n−1 segments which cover the domain at the scale n is
attributed a kinetic energy El

�n��t� �where l=1, . . . ,2n−1 is the
index denoting the segments at the scale n�. The total energy
at the scale n equals the kinetic energy of the corresponding

shell—that is, �l=1
2n−1

El
�n��t�= 	un�t�	2 /2.

In order to have an evolution of the spatial energy struc-
ture, the spatial distribution of the p and 1− p values is
changed during the time evolution. Two different methods,
described below, were used to perform this changes in time,
and we denote by model A and model B the two versions of
the model corresponding respectively to these two methods.

Model A. In the first version of the model the changes of
the probabilities in space are done at the same time instant
for all the segments at a given scale n. Let us suppose that
the last change in the p distribution at the scale n occurs at
the time step tj

�n�. At each time step ti we calculate the instan-
taneous eddy turnover time �e

�n−1��ti�= �kn−1un−1�ti��−1 for the
scale n−1 and compare it to the time elapsed from the last
change 
t�n�= ti− tj

�n�. If 
t�n���e
�n−1�, the p spatial distribu-

tion at the scale n is redrawn. This procedure is followed for
each n�1.

Model B. In the second version the spatial changes of the
probabilities are done independently for the different seg-
ments at a given scale n. Indeed one of such changes always
involves a couple of segments l and l+1 �where l is an odd

FIG. 2. Space-time structure of the energy dissipation rate ��x , t�
in model A for p=0.8 �top panel� and p=1 �bottom panel�. The gray
levels refer to the logarithm of ��x , t� �arbitrary units�. Time is
expressed in arbitrary units.
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integer number�, because if the probability is p for the
segment l, it must be 1− p for the segment l+1 and
vice versa. As a consequence, if we denote by tj

�n,l� the
last change for the segment l at the scale n, we have that
tj
�n,l�= tj

�n,l+1� for a couple of neighboring segments with l odd
integer. At each time step ti, we compute the local instanta-
neous eddy turnover time for the corresponding father
segment at the scale n−1 �whose index is lf =

l+1
2 �—that is,

�e
�n−1,lf��ti�= �kn−1�2Elf

�n−1��ti��−1—and compare it to the time

elapsed from the last change 
t�n,l�=
t�n,l+1�= ti− tj
�n,l�. If


t�n,l���e
�n−1,lf��ti�, the probability values are redrawn for the

segments l and l+1. This procedure is followed for each
n�1.

The two procedures described above aim to describe phe-
nomenologically the correlations arising in the cascade due
to the scaling of the eddy turnover times. The main differ-
ence between them consists in the fact that in model B we try
to take into account also the local dynamics of the turbulent
cascade on the spatial domain.

In both the versions of the model, summing the contribu-
tion coming from all the scales, we obtain the spatial shape
of the energy density w�x , t� as

w�x,t� = �
n=1

N Eln�x�
�n�

�n
, �6�

where x denotes the grid position, corresponding to the
smallest scale grid spacing, and ln�x�=Int��x−1� /�n�+1 �Int
denotes the integer part of a real number�. We can now de-
fine also an energy dissipation rate which depends on the
spatial coordinate as

��x,t� = ��
n=1

N

kn
2
Eln�x�

�n�

�n
. �7�

IV. NUMERICAL PROCEDURE

The shell model equations �1� have been numerically
solved using a fourth-order Runge-Kutta scheme. The pa-
rameters used in the simulations are N=15, �=10−4, k0
=2−5, and �=2. We used an external forcing term applied on
the third and fourth shells given by f3= f4=0.1�1+ i�. With
these parameters the Reynolds number is Re�105 and the
large-scale eddy turnover time �e�40. A sample of the total
energy dissipation rate ��t� given by the shell model is
shown in Fig. 1.

The number of grid points in the 1D spatial domain is 214.
Another free parameter of the model is the p value used to
construct the spatial structure of the energy dissipation. It
should be clear to the reader that it is not necessary to use the
value p=0.7 which allows the p model to reproduce the mul-
tifractal structure of the energy dissipation rate observed in
experiments of fully developed turbulence �10�. This is why
the models proposed here, although inspired to some extent
by the p model, are substantially different from it, being
characterized also by the dynamics provided by the shell
model and by the evolution of the p spatial distribution. The
multifractal properties of the spatial energy dissipation given
by the model change in time. More precise indications about
the values to be attributed to the p parameter can be found
from the application of the model to well-defined physical
situations, a question which we plan to further investigate in
the future. For this work, we have performed numerical
simulations using the values of p=0.7,0.8,0.9,1 for model

FIG. 3. Time evolution of the kurtosis of the spatial energy dissipation rate ��x� in model A for the four different values of p used:
p=0.7 �top-left�, p=0.8 �bottom-left�, p=0.9 �top-right�, and p=1 �bottom-right�. Time is expressed in arbitrary units.

LEPRETI, CARBONE, AND VELTRI PHYSICAL REVIEW E 74, 026306 �2006�

026306-4



A and p=0.7,0.8 for model B. We would like to remark that
changing the spatial distribution of the p and 1− p values
according to the instantaneous eddy turnover times at each
scale, as described in the previous section, is necessary for
describing the intermittent behavior of the energy dissipa-
tion. As a confirmation, we performed a simple test in which
we modified the spatial distribution of the probabilities at
each time step and obtained that in this case the energy dis-
sipation rate is not intermittent for any value of p.

V. ANALYSIS OF THE SPATIAL INTERMITTENCY

In order to validate the proposed models, we performed
an analysis of the spatial intermittency properties of the
energy dissipation rate for different values of the p param-
eter. This has been done both by calculating the kurtosis of
��x� and by looking for the presence of multifractal scaling
laws in ��x� �32–34�. In this way, some comparisons to the
scaling exponents of structure functions found in turbulence
experiments can also be made.

The starting point for multifractal analysis is the definition
of the probability measure

i�r� =
�i�r�
��L�

, �8�

where

�i�r� = 
Si�r�

��x�dx . �9�

Si�r� represents a hierarchy of disjoint segments of size r
covering the domain L. We can calculate the so-called gen-
eralized dimensions Dq �35� by looking at the scalings of the
qth order moments of i�r� vs r:

�q� = �
i

i
q�r� � r�q−1�Dq. �10�

The largest values of q amplify the contribution given to
�q� by the most intermittent regions of the measure, while
for small values of q the major contribution is due to the
most regular regions. If the probability measure is globally
self-similar �i.e., nonintermittent�, Dq is constant and it
corresponds to the fractal dimension of the measure.

TABLE I. Scaling exponents �q for the velocity structure functions as estimated from the energy dissipation scalings in model A for the
four values of p considered. In the last column we report the velocity structure functions exponents computed from a wind tunnel experiment
�37�.

q p=0.7 p=0.8 p=0.9 p=1.0
Wind
tunnel

1 0.337±0.001 0.342±0.002 0.350±0.005 0.362±0.008 0.37±0.01

2 0.670±0.001 0.675±0.002 0.683±0.005 0.694±0.007 0.70±0.01

3 1.00 1.00 1.00 1.00 1.00

4 1.326±0.002 1.317±0.004 1.304±0.008 1.285±0.012 1.28±0.02

5 1.650±0.005 1.628±0.011 1.596±0.020 1.554±0.027 1.54±0.03

FIG. 4. Energy dissipation rate �in arbitrary units� on the spatial domain in model A: p=0.7 and t=73 �top-left�, p=0.8 and t=133
�bottom-left�, p=0.9 and t=80 �top-right�, and p=1 and t=51�bottom-right�.
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Conversely, if Dq is not constant, the scaling laws are said to
be anomalous and the measure can be described as a multi-
fractal object. In this case, it can also be shown that Dq is a
nonincreasing function of q �33�.

The generalized dimensions Dq can also be related to the
scaling exponents �q of the velocity structure functions,
which are measured in fluid flows and represent the bench-
mark for the nonlinear energy cascade modeling. These
exponents are defined by

��vr
q� = ��v�x + r� − v�x��q� � r�q. �11�

It can be shown �36� that

�q =
q

3
+ �q

3
− 1��Dq/3 − d� , �12�

where d represents the topological dimension of the support,
in our case d=1.

We show in the next two subsection the results obtained
for model A and model B, respectively.

A. Model A

In Fig. 2 the space-time structure of the energy dissipation
rate ��x , t�, calculated according to Eq. �7�, is shown for p
=0.8 and p=1. For the sake of clarity the gray levels refer to
the logarithm of ��x , t�. It can be seen that ��x , t� becomes
more and more fragmented in space as p increases, as one
would expect.

To give a first indication on the intermittency properties of
the spatial energy dissipation ��x�, the time evolution of the
kurtosis of ��x� for the four different values of p used is
shown in Fig. 3. The increase of the typical values of the
kurtosis confirms that the level of intermittency is signifi-
cantly enhanced as p increases from 0.7 up to 1. In Fig. 4 the
spatial structure of the energy dissipation rate ��x� is shown

for four fixed time instants �one for each of the different p
values used� where the kurtosis shown in Fig. 3 displays a
peak. The four time instants chosen are t=73 for p=0.7, t
=133 for p=0.8, t=80 for p=0.9, and t=51 for p=1. This
figure shows that at some positions the quantity ��x� shows
very strong bursts, which appear to become stronger and
stronger as p increases.

The multifractal analysis was performed by calculating
the moments �q� given in Eq. �10� for −5�q�5 at 100

FIG. 5. Generalized dimensions Dq of the spatial energy dissi-
pation rates in model A for p=0.7 �dotted line�, p=0.8 �dash-dotted
line�, p=0.9 �dashed line�, and p=1.0 �solid line�. The Dq values
were calculated as time averages over all the time instants consid-
ered �see text�. Error bars, representing standard deviation errors,
are also reported for some values of q.

FIG. 6. Space-time structure of the energy dissipation rate ��x , t�
in model B for p=0.7 �top panel� and for p=0.8 �bottom panel�.
The gray levels refer to the logarithm of ��x , t� �arbitrary units�.
Time is expressed in arbitrary units.
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different time instants—namely, t=41,42, . . . ,140. A good
scaling region extending almost over the whole r range was
found for all the q’s. The generalized dimensions Dq were
calculated as averages over all the time instants considered.
The plot of Dq vs q obtained for the four values of p used is
shown in Fig. 5. It can be seen that the spectrum of Dq values
becomes wider as p increases. This is a consequence of the

enhanced level of intermittency which produces stronger and
more localized dissipation bursts for larger values of p.

The scaling exponents �q as estimated from the energy
dissipation scalings in model A for the four values of p
considered are reported in Table I. As a comparison, the
�q exponents computed from a wind tunnel experiment
�37� are also shown. It can be seen that model A gives

FIG. 7. Time evolution of the kurtosis of the
spatial energy dissipation rate ��x� in model B for
p=0.7 �top panel� and p=0.8 �bottom panel�.
Time is expressed in arbitrary units.

FIG. 8. Energy dissipation rate �in arbitrary
units� on the spatial domain in model B for
p=0.7 and t=58 �top panel� and p=0.8 and
t=66 �bottom panel�.
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scaling exponents in agreement with experiments �within the
experimental error� for p�0.9.

B. Model B

The space-time structure of the energy dissipation rate
��x , t� for p=0.7 and p=0.8 is shown in Fig. 6. A larger
spatial fragmentation of ��x , t� for the larger p is clearly
observed.

The time evolution of the kurtosis of ��x� for p=0.7
and p=0.8 is shown in Fig. 7. It can be seen that the
typical values of the kurtosis increase going from p=0.7 to
p=0.8 as it could be expected. Comparing Fig. 7 to Fig. 3
we can notice that, for the same p, model B is much
more intermittent than model A. For instance, using p=0.8,
model B roughly reaches the same level of intermittency as
model A with p=1. In Fig. 8 we show the spatial structure of
the energy dissipation rate ��x� at two time instants where a
peak in the kurtosis is found—that is, t=58 for p=0.7 and
t=66 for p=0.8. From this figure it is clear that also, for
model B, ��x� shows very strong intermittency bursts in
space.

Also for model B we investigated the spatial intermittency
properties of the energy dissipation rate through the
multifractal analysis described previously. The moments
�q� given in Eq. �10� were calculated also in this case
for −5�q�5 at the 100 time instants t=41,42, . . . ,140.
Good scalings were found for all the q values and the
dimensions Dq were obtained as averages over all the
time instants considered. Figure 9 shows the plot of Dq vs q
for p=0.7 and p=0.8. As expected, the Dq spectrum is wider
for p=0.8. Moreover, we can observe that the Dq curve for
p=0.8 is very close to the one obtained in model A for
p=1.

The scaling exponents �q of the velocity structure func-
tions in model B as estimated from Eq. �12� are reported in
Table II. A good agreement with the scaling exponents found
in the wind tunnel experiment analyzed in Ref. �37� is
obtained for p=0.8.

The fact that for a given p a larger intermittency is found
in model B than in model A is clearly a consequence of the
fact that in the procedure used in model B for the time evo-
lution of the spatial distribution of p and 1− p we consider
also the local dynamics of the energy cascade as pointed out
in Sec. III.

VI. CONCLUSIONS

A problem which often arises when studying turbulent
phenomena occurring in astrophysical and space fluids is the
description of the intermittency of the energy dissipation pro-
cess from a spatiotemporal point of view. Due to the huge
Reynolds numbers occurring typically in these situations, a
dynamical system modeling of intermittency can represent
an important ingredient for the characterization of such
systems.

In this paper we propose a method to model the main
intermittency features of energy dissipation in a turbulent
system both in space and time. This is done by using a shell
model to simulate the time evolution of the turbulent cascade
and introducing some heuristic rules, partly inspired by the
well-known cascade p model, to construct a spatial structure
for the energy dissipation rate.

To the aim of validating the model, we performed a series
of numerical simulations to study the spatial intermittency
properties of the energy dissipation rate for different values
of the free parameter p. The results show that the level of
spatial intermittency of the system can be simply tuned, in
both proposed versions of the model, by changing the value
of p. The spatial intermittency of the system is enhanced by
increasing the p parameter. Scaling laws in agreement with
those obtained in experiments involving fully turbulent hy-
drodynamic flows are recovered in model A for 0.9� p�1
and in model B for p�0.8.

The results of this work open the way to applications of
the proposed model to different physical situations. In our
opinion this model could represent a useful tool to simulate

TABLE II. Scaling exponents �q for the velocity structure func-
tions as estimated from the energy dissipation scalings in model B
for p=0.7 and p=0.8. In the last column we report the velocity
structure functions exponents computed from a wind tunnel experi-
ment �37�.

q p=0.7 p=0.8
Wind
tunnel

1 0.348±0.004 0.369±0.009 0.37±0.01

2 0.681±0.004 0.700±0.008 0.70±0.01

3 1.00 1.00 1.00

4 1.307±0.006 1.277±0.014 1.28±0.02

5 1.602±0.015 1.536±0.031 1.54±0.03

FIG. 9. Generalized dimensions Dq of the spatial energy dissi-
pation rates in model B for p=0.7 �dashed line� and p=0.8 �solid
line�. The Dq values were calculated as time averages over all the
time instants considered �see text�. Error bars, representing standard
deviation errors, are also reported for some values of q. The Dq

curve obtained in model A for p=1 is also shown as a comparison
�dotted line�.
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the intermittent structure of turbulent energy dissipation in
those high-Reynolds-number astrophysical fluids where im-
pulsive energy release processes can be associated with the
dynamics of the turbulent cascade. To give just some ex-
amples, such a modeling could be interesting for studying
the role of intermittent energy dissipation in the active re-
gions of the solar corona, in the interstellar medium, and in

accretion disks. We plan to investigate some of these
problems in future studies.
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